
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2001; 35: 721–741

A convergence accelerator of a linear system of equations
based upon the power method
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SUMMARY

This paper considers the convergence rate of an iterative numerical scheme as a method for accelerating
at the post-processor stage. The methodology adapted here is: (1) residual eigenmodes included in the
origin of the convex hull are eliminated; (2) remaining residual terms are smoothed away by the main
convergence algorithm. For this purpose, the polynomial matrix approach is employed for deriving the
characteristic equation by two different methods. The first method is based on vector scaling and the
second is based on the normal equations approach. The input for both methods is the solution difference
between two consecutive iteration/cycle levels obtained from the main program. The singular value
decomposition was employed for both methods due to the ill-conditioned structure of the matrices. The
use of the explicit form of the Richardson extrapolation in the present work overrules the need to employ
the Richardson iteration with a Leja ordering. The performance of these methods was compared with the
GMRES algorithm for three representative problems: two-dimensional boundary value problem using
the Laplace equation, three-dimensional multi-grid, potential solution over a sphere and the one-
dimensional steady state Burger equation. In all three examples both methods have the same rate of
convergence, or better, as that of the GMRES method in terms of computer operational count. However,
in terms of storage requirements, the method based upon vector scaling has a significant advantage over
the normal equations approach as well as the GMRES method, in which only one vector of the N
grid-points is required. Copyright © 2001 John Wiley & Sons, Ltd.

KEY WORDS: convergence accelerator; power method; generalized minimal residual; Richardson extrap-
olation method; singular value decomposition

1. INTRODUCTION

The rapid development of very efficient methods for solving a linear system of equations is one
of the main characteristics of recent advances in computational fluid dynamics (CFD).
However, these convergence algorithms are an integral part of the numerical codes in which
implementation of these methods require substantial numerical effort. In some cases, the
nature of the numerical codes does not permit any kind of modification. Therefore, there is a
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clear need for a post-processor to accelerate the convergence of the numerical codes. This
post-processor must be able to use the available numerical output, such as residuals, without
interfering with the code execution process. Development of such methods is the main
motivation for the present work.

Traditionally, the classical methods such as Jacobi, Gauss–Seidel and successive overrelax-
ation (SOR)/successive line overrelaxation (SLOR) have played an important role in the
elliptic solution of the full potential transonic problem. However, these methods are character-
ized by a slow rate of convergence and require substantial computational time. The need for
an efficient and reliable algorithm has motivated research into the class of numerical
algorithms, known as the alternating direction implicit (ADI) methods. Among these methods,
the modified version of the Peacman–Rachford algorithm (approximate factorization (AF1
and AF2)) has because an important tool in full potential equation solvers. The Peacman–
Rachford algorithm works well for a rectangular domain in two-dimensional linear elliptic
problems, where for the proper pseudo-time step it converges at min{N, M} iterations to the
exact solution (N and M are the number of grid-points at each direction). However, for general
three-dimensional problems, such a method does not eliminate the error entirely. The choice of
the pseudo-time step for general three-dimensional problems is the main drawback of this
method. The strongly implicit procedure (SIP) method is also worth mentioning. Despite the
fact that the SIP method is very promising, it is rarely used in CFD.

A very powerful convergence algorithm that is widely used in CFD is the Multi-grid method.
The Multi-grid concept is similar to the Peacman–Rachford algorithm, in which each
wavelength is dampened at each multi-grid grid level. The slowest (long waves) modes are
efficiently decayed in the coarse grid level, while the short waves are dampened on the fine
meshes. Therefore, such an algorithm does not exhibit the same slow rate of convergence that
is typical to the long waves, as in the traditional convergence algorithms mentioned above.

A different approach that has been proven to be extremely effective for solving large sets of
linear equations is the conjugate gradient (CG) method. This class of method is sometimes
regarded as a convergence accelerator technique, and produces extremely efficient convergence,
particularly when coupled to an appropriate preconditioning method. Eigenvalue clustering
obtained from a preconditioner, such as Choleski factorization (incomplete lower–upper
(ILU)), is the key for the rapid convergence [1,2]. The CG method is known to be efficient in
dealing with symmetric positive definite matrices. However, for non-symmetric matrices,
several generalizations of the CG method have been proposed in the literature. The Lanczos-
based methods, such as the CG stabilized (CGS) method [3] and the bi-CG stabilized
(Bi-CGSTAB) method [4] are widely employed, while the Generalized Minimal RESidual
(GMRES) [5] belongs to the class of Arnoldi-based methods. For non-symmetric matrices the
GMRES proved to be very effective for solving large sets of linear equations. The GMRES
method is based on the minimal residual. It forms an orthogonal basis (search direction)
spanning the Krylov subspace by a modified Gram–Schmidt method. An easy implementation
of the GMRES method is based upon slaving the convergence algorithm of the main program,
such as the symmetric successive overrelaxation (SSOR) or the ILU algorithm, as a precondi-
tioner to accelerate the convergence rate of the main algorithm [6]. Therefore, such an
approach does not require substantial programming effort. However, the storage requirement
of the GMRES, as well as that of CG, seems to be the main limitation of this method. An
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alternative implementation of the GMRES using householder transformation is given by
Walker [7], since the Gram–Schmidt process is a potential source of numerical error.

A different approach that has been widely employed as a convergence accelerator is the
power method (PM). In the PM, the extreme eigenvalues are estimated. Based on the
eigenvalues estimation, either the Richardson extrapolation or the Chebyshev iterative proce-
dure are then employed to obtain the asymptotic solution [8–10]. In a similar fashion, the
extreme eigenvalues in the hybrid methods are estimated either by the PM or by the
Arnoldi/GMRES procedure. The iterative solution is then repeatedly accelerated by the use of
the Richardson extrapolation algorithm or by Chebyshev iterative procedure [10,11]. This
matter is elaborated upon in the forthcoming sections.

Traditionally, much effort was devoted to solving the discretized form of the Navier–Stokes
equations on structure meshes. However, due to the convenience of the unstructured grid
generation, Navier–Stokes solutions on unstructured grids are gaining popularity. However,
this methodology has not reached the same maturity level as the solutions on structured grids.
The semi-implicit ADI or residual smoothing (Multi-grid) solutions are efficiently obtained
along the structured gridlines. On unstructured meshes an explicit Jacobi method is often
employed, which may limit the allowable Courant–Friedrich–Lewy (CFL) number. Both
structured and unstructured solutions exhibit a slow converge rate when a viscous solution is
under consideration. In such a case, a highly stretched grid is needed in order to resolve the
boundary layer. Large cell aspect ratios in the boundary layer can reduce the rate of
convergence. Therefore, in structured grids semi-coarsening the multi-grid plays an important
role in increasing the convergence rate. However, in unstructured grid topology, cell aspect
ratio seems to have a pronounced effect on the accuracy and the convergence rate of the
results. Therefore, hybrid meshes are often used to overcome this problem.

Numerical codes (executable commercial and source files) do not always include the
numerical tools needed to cope with slow convergence rates resulting from skewness and large
cell aspect ratio. Upgrading of such source files requires a substantial numerical effort, which
is not always justifiable and affordable. Some of the executable commercial codes do not even
include a convergence algorithm, such as the Multi-grid technique. Moreover, the level of
executable codes does not permit any kind of modification, as they are supplied as source files.
In view of this, there exists a clear need for an algorithm (post-processor) to accelerate the
convergence rate of the numerical codes. However, post-processors based on the GMRES
method in a fashion similar to that of Wigton et al.’s [6] require large computer storage
capacity. Moreover, the convergence algorithm of the numerical program needs to be slaved as
a preconditioner. Both requirements constitute a major drawback for small workstations in
which slaving the main algorithm of an executable code is not an easy task. Therefore, a
post-processor that can use the available numerical output such as the residual or the solution
difference, without interfering in the process of the numerical codes execution, is the main
motivation of the present work.

2. THE ASYMPTOTIC BEHAVIOR OF THE NUMERICAL ERROR

The asymptotic convergence of the numerical scheme is dominated by the module of the
largest eigenvalue. It should be recalled that the spectral radius of the numerical error has to
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be smaller than unity for convergence. The closeness of the spectral radius to unity plays an
important role in the efficiency of the numerical scheme. Typically, the main characteristic of
the iterative process is rapid convergence at the early stages of the solution, which slows down
gradually to the asymptotic value of the numerical error. For non-linear problems it is not
uncommon to observe an increase in the residual before it drops to its asymptotic value. The
rapid convergence at the early stages of the numerical solution is essentially due to the initial
error distribution, in which the dominant error terms (with respect to the initial error
distribution and not necessarily corresponding to the largest eigenvalue) are efficiently damp-
ened away until they reach their asymptotic stage.

The iterative solution of the numerical scheme can be viewed as an eigenvalue problem,
where at each stage of the iterative process the residual R(k) can be written as follows:

e (k)+R(k)=0 (1)

where R(k)=R(u (k)) and u (k+1)=u (k)+e (k) are given at the iteration level k. Generally,
Equation (1) is given in its implicit form, such as Le (k)+G (k)=0, where L is some difference
operator and G=LRk. For simplicity, the form of Equation (1) is given here. The Taylor
series expansion of Equation (1) at the iteration level (k+1) yields

e (k+1)+B (k)e (k)+O(e2)=e (k+1)+Be (k)+O(de)=0 (2)

where Bk=B+O(d) and B=I−A. The flux Jacobian matrices A=(uR are evaluated at u,
where u is the asymptotic solution (R(u)=0). The terms e and d are defined as ek=O(e),
u−uk=O(d). Therefore, for an initial guess close enough to u, the residual at each stage of
the iterative process can be regarded as an eigenvalue problem (Equation (2)), where the
residual decays asymptotically with respect to the spectral radius of B. Consequently, the
analysis and the algorithms in this work refer to the solution of a linear system Au−b=0.
This fact can be exploited to construct an asymptotic solution to the iterative process
(Equation (1)) in a fashion similar to the Manteuffel [8], Saylor [9] and Saad [12] algorithms.
The solution of the eigenvalue problem (2) can be written as follows:

e (k)=FLkF−1e (0)

or alternatively as

e i
(k)=%

n

Cnln
kfn,i (3)

where L and F are the eigenvalues and the eigenvectors of matrix B, while e (0) is the initial
residual (see Equation (1)). Some efforts have already been devoted [13] to the estimation of
these eigenvalues, but the results are unsatisfactory. Convergence difficulties may arise if the
first two eigenvalues are close in magnitude. Major advances in the PM were initiated by the
work of several authors, including Manteuffel [8], Saylor [9], Elman et al. [10]. In the
Manteuffel [8] approach, the PM is employed to derive estimates of the extreme eigenvalues of
A. These estimates are then used to defined an ellipse, and the Chebyshev iterative procedure
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is then carried out with the parameters corresponding to that ellipse. Saylor [9] has employed
the singular value decomposition (SVD) with respect to the least square problem in order to
get a reliable estimate of the extreme eigenvalues of A. Based on these eigenvalues, the
Chebyshev iteration method was employed to accelerate the convergence of the iterative
algorithm. Elman et al. [10] have used the Arnoldi process and the GMRES method in order
to get better accuracy of the predicted eigenvalues, which are needed for the hybrid method.

For a linear system of equations, the hybrid scheme has been found to be extremely
effective, when a few steps of GMRES are followed by a Richardson iteration based on
polynomial constructed, either by eigenvalues obtained by the PM or by the GMRES/Arnoldi
methods [10,11]. However, when a non-linear set of equations is under consideration, it seems
to be that the eigenvalues need to be updated after some amount of iteration.

The order of accuracy of the eigenvalues might have some influence on the accuracy of the
method. However, Nachtigal et al. [11] have noticed that in the case of a linear system of
equations, eigenvalue estimates are sometimes more reliable than exact eigenvalues. On the
other hand, accurate methods to estimate the eigenvalues, such as the Arnoldi/GMRES
technique, have recently replaced the PM [10].

The Richardson extrapolation method is usually employed in order to get the corrected
solution of the hybrid methods, i.e.

u (k+1)=u (k)−
1

1−lk+1

r (k)

r (k+1)=
!

I−
1

1−lk+1

A
"

r (k)= −
lk+1

1−lk+1

!
I−

1
lk+1

B
"

r (k) (4)

where lk+1 are the eigenvalues of the matrix B (k=0, 1, 2, . . . , N−1) and r (k) denotes the
Richardson extrapolation residual. For a well-conditioned matrix A, whose eigenvalues are
clustered around unity, the above residual decays asymptotically as [max(1−li)]M, for a given
M eigenvalue terms. However, difficulty in convergence may be encountered if some of the
eigenvalues have a negative real part of the origin of the convex hull is included [9]. To clarify
this point, assume that M (MBN) dominant eigenvalues of B (B=I−A) are being used in
the hybrid scheme. In such a case, the residuals decay as

q=P(L)q (0) (5)

where q=F−1r, while L=diag(l1, l2, l3, . . . , lN) is a diagonal matrix containing the eigen-
values of the matrix B in the diagonal. The residual polynomial (P(l)) is given as

P(l)= 5
M−1

j=0

lj+1

1−lj+1

!
I−

1
lj+1

l
"

(6)

For a well-conditioned matrix A all the eigenvalues are clustered around unity; therefore,
��P(L)��2B1 (see Equation (6)). However, in the present method, the residual polynomial is
constructed with the largest eigenvalue of the matrix B. Particularly, it becomes a severe
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problem when some of the eigenvalues of the matrix A are in the vicinity of the origin, i.e.
�1−lj+1��0, in which case Richardson extrapolation eliminates the M dominant terms but
amplifies the remaining modes, or in other words ��P(L)��2\1. This usually occurs when the
matrix A is not well conditioned. Consequently, hybrid methods might lead in such a case to
divergence rather then convergence. Therefore, it seems that a combination between the
Richardson extrapolation method and a smoothing operator, such as the iterative convergence
algorithm of the solver, may be the best way to operate the hybrid method. In such a case, the
residual behaves after L iterations of the convergence algorithm (2) as

q= 5
M−1

j=0

lj+1

1−lj+1

!
I−

1
lj+1

L
"
LLq (0) (7)

Usually the convergence algorithm of the main solver is well conditioned, except for some
errant modes, resulting probably from high aspect ratio or bad skewness of the cells.
Therefore, an effective residual polynomial eliminates or removes the M leading eigenvalues,
while the remaining eigenvalues are supposed to be damped away by the available smoothing
operator LL. Such a procedure can be employed as a post-processor to accelerate the
convergence of the numerical codes at the source level or executable files, without interfering
with the process of the main solver execution. A similar concept was presented by Webster [14]
in connection with slow modes resulting from low-order prolongation operators in the
algebraic multi-grid process.

In the present work, the Richardson extrapolation in derived in a different form. The
asymptotic correction of Equations (2) and (3) can be written as

u=u (0)+ %
�

k=0

e (k)=u (0)+A−1e (0) (8)

A−1=F(I−L)−1F−1

Upon substitution of Equation (3) into Equation (8), the following can be obtained:

u=u (0)+EG−1d (9)

where E= [e (0), e (1), e (2), . . . , e (M−1)], the square Vandermonde matrix (M×M) G={l i
j−1}

and the vector d= [1/(1−l1), 1/(1−l2), 1/(1−l3), . . . , 1/(1−lM)]T. Equation (9) is the ex-
plicit form of the Richardson extrapolation (2) in terms of the Krylov subspace span by the
matrix B. Note that the coefficients of the explicit form of Richardson extrapolation are given
by G−1d. Therefore, the SVD should be employed in order to avoid numerical error due to the
ill-conditioned nature of the Vandermonde matrix G. Moreover, it seems that the ill-condi-
tioned nature of Equation (9) is an indication of a possible inaccuracy problem in Equation
(4). In other words, using Richardson extrapolation (Equation (4)), without taking care of the
ill-conditioned nature of G−1d may produce unsatisfactory results. Therefore, in the present
work Equation (9) was adopted for extrapolation. It would be worth mentioning that the same
point was addressed by Nachtigal et al. [11], in which the weighted Leja ordering [15] was
incorporated together with the Richardson method for the purpose of the extrapolation.
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In practice, it would be rather difficult to find all the eigenvalues of Equation (3). Therefore,
it seems that the key for accurate eigenvalue prediction is an iterative scheme that reduces
efficiently most of the remaining modes for a given number of iterations. The adaptive
Chebyshev method is probably a preferred way to handle this problem. However, it was not
implemented here mainly due to the fact that it is highly sensitive to its parameter, and the
eigenvalue estimates are sometimes more reliable than the exact eigenvalues [11]. In the present
work we prefer to use the terminology ‘smoother’ for such an iterative convergence algorithm
of the main solver.

To conclude this section, the following guidelines summarize the main ideas presented here.
Note that the residual at each iteration stage is given by ek=uk+1−uk; therefore, the
convergence of the numerical algorithm can be accelerated as follows:

1. Collect the residual ek=uk+1−uk.
2. Compute the M leading eigenvalues from the residual.
3. Use Richardson extrapolation (9) with the computed eigenvalues to predict a better restart

solution.
4. Run the numerical code for L iterations to smooth out the results.
5. If ��e ��\ tolerance go to step 1.

The above procedure resembles in some respects the ‘Unmodified’ PM of Elman et al. [10].
However, the residual here is based upon the iterative scheme ek= −Bke (0) rather then on
r (k)=Akr (0). The resultant smoothing is also another difference between the present method
and that of Elman et al. [10]. In the present approach, result smoothing is a must, particularly
when the matrix A is not well conditioned.

3. METHOD OF SOLUTION

In the previous section we examined and discussed the concept of the present research. Briefly,
the main idea here is to eliminate the M leading terms and to smooth the remaining terms of
the eigenvalues by a suitable smoother algorithm, such as the main convergence algorithm of
the numerical code. The main concern is to adopt an efficient approach to compute the leading
eigenvalues without interfering with the main numerical code execution. Therefore, methods
based upon slaving the main numerical algorithm, such as Arnoldi/GMRES, are excluded.

In the following sections we will examine three methods of solution: the normal equations
method, the SVD for the least squares problems (SVDLS) and the vector scaling method.

3.1. The normal equations

The leading terms of the eigenvalues can be determined by considering M terms of Equation
(3). Therefore, the accuracy of the eigenvalues prediction is controlled by the remainder terms
in Equation (3). One way to eliminate these terms is by application of a suitable smoother
algorithm as already mentioned. However, the search for such an algorithm is beyond the
scope of the present work. Moreover, since we are concerned with implementing this method
as a post-processor to a main solver, controlling the remainder terms is not feasible in this way.
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In a fashion similar to Manteuffel [8], Saylor [9] and Elman et al. [10], it seems that a more
efficient way to compute the leading eigenvalues terms and to minimize the effect of the
remainder terms can be devised by minimizing the norm of the residual given by Equation (6).
However, the above method can also be viewed in a different manner by considering the
residual polynomial equation PN

(1)(l)=PM(l)QN−M(l)=0, where P and Q are polynomials of
degree M and N−M respectively, while PN

(1) is the characteristic polynomial of the matrix B,
having degree N (N is the dimension of matrix B). In matrix representation it turns out that
PM(B)=RM(B), where RM(B) is a matrix whose first M eigenvalues terms are zero. Note that
RM is the remainder matrix, while r8RM(B)e (0) is the Richardson extrapolation residual. In
a fashion similar to Manteuffel [8], Saylor [9], Elman et al. [10] and Saad [16], the problem is
then to find a set of coefficients ln (see Equation (6)) that makes the L2-norm of the remainder
terms RM(B)e (0) as small as possible.

The L2-norm of the remainder terms can be written as

��RM(B)e (0)��2= [e (0)]T[PM(B)]TPM(B)e (0)

Since PM(B)=a0+a1B+a2B2+ · · · +BM, the minimization of the remainder terms yields

(

(aj

��RM(B)e (0)��2=2[e (0)]T[BT]jPM(B)e (0)=0

Since e (k)=Bke (0) the last expression can be further simplified to the following form:

%
M−1

m=0

[e ( j)]To (m)am= − [e ( j)]Te (M) for j=0, 1, 2, . . . , M−1 (10)

Equation (10) is sometimes employed in the least square approximation problem. It is also
known as the normal equation and it is very useful for computation when M is small. When
matrix B is symmetric, Equation (10) can be reduced to the Hankel matrix form, with entries
fi+ j−1= [e (0)]Te (i+ j−2). The solution of Equation (10) has two disadvantages. First, multiplica-
tion by both [e ( j)]T and e (m) are required at each step. Secondly, the condition number of
[e ( j)]Te (m) is the square of e (m). Nevertheless these types of the normal equation algorithms are
sometimes employed in the CG method and are also known as Craig’s method [1]. In spite of
these drawbacks, the normal equations in the approach can exhibit the same convergence
performances as the GMRES method, and sometimes even better as we shall see in the results
section. Bearing in mind that some of the accuracy will be lost due to the less favorable
condition number, the residual polynomial coefficients am can be obtained by solving Equation
(10). However, since Equation (10) is also an ill-conditioned system, the SVD method was
employed for this case.

3.2. The singular 6alue decomposition for the least squares problem

Some accuracy may be lost due to the large condition number of the normal equation.
Therefore, a better approach is to consider, in a very similar way to Saylor [9], the L2 norm
of the residual in the following form:
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min��RMe (0)��22=min��PMe (0)��22=min��e (M)+Ea ��22=min��WVT(gM+a)��22

where E= [e (0), e (1), e (2), . . . , e (M−1)]=UWVT and e (M)=UWVTgM. Here the N×M matrix
E, whose number of rows N is greater then the number columns M, is written as a product of
a N×M column-orthogonal matrix U, an M×M diagonal matrix W and an M×M
orthogonal matrix V. For further details see Appendix A. For such a representation, the
minimization is given by a= −gM= −VW −1UTe (M) (see Appendix A). Note that the norm
of the an is not enforced to unity as it is in Saylor [9]. We shall examine the efficiency of this
procedure in the forthcoming sections.

3.3. The 6ector scaling

Both the normal equation approach and the SVDLS algorithm are standard procedures for
finding the residual polynomial coefficients. However, the storage requirements for both
methods are a heavy burden on the computational facility, in which O(M) vectors, with size
O(N), are to be stored. In this section we will adapt a different approach, in which only one
vector scaling of size O(N) in needed.

The main idea is to look for a vector scaling, say v0, in which v0
TRMe (0)=0. An obvious

choice for v0 is a linear combination of the M eigenvectors inverse. Generally, T−1 has no
unique representation, however, among all the possible ways to construct T−1, the SVD
ensures the smallest error. Therefore, the eigenvector matrix and its inverse can be obtained
from Equation (3) as follows:

T=EGM
−1 and T−1=GMVW −1UT=GM(ETE)−1ET

where T={f1, f2, f3, . . . , fM} is the eigenvector matrix, while E=UVW T is the residual
matrix. Note that the M eigenvalues require M eigenvectors, and for that reason E was chosen
as E={e (1), e (2), . . . , e (M)}. The matrix GM is the square Vandermonde matrix form of the M
eigenvalues defined by {l j

i}j=1, M, i=1, M. Any vector defined by the linear combination of the
rows of T−1 can be written as

6=x0T−1=x0GM(ETE)−1ET=aET (11)

where

a=x0GM(ETE)−1

where x0 is an arbitrary vector and a={a (1), a (2), . . . , a (M)}. Therefore, 6 can be written as
6={a (1)e (1)+a (2)e (2)+ · · · +a (M)e (M)}. The dot product between the vector 6T and RM(B)e (0)

yields the orthogonality condition

�6TRM(B)e (0)�= �{a (1)e (1)+a (2)e (2)+ · · · +a (M)e (M)}TPM(B)e (0)� (12)
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It turns out that the solution of Equation (10) imposes orthogonality for any vector a

(Equation (12)). Since the vector scaling 6 is defined as a linear combination for any given
vector a, it follows that 6=e (0) is a particular solution for such a case. Moreover, e (0) is the
most available vector that contains the relevant information regarding the dominant eigen-
value distribution. Therefore, the scaling vector v0=e (0) and the reminder term RMe (0) yields

%
M

n=1

anfn+m−2+ fM+m−1=0, 15m5M (13)

The term fl is defined as fl=v0
Te (l)= [e (0)]Te (l). In the case of a symmetric matrix, Equation

(13) will yield the normal equations. The coefficients of the residual polynomial are given by
the solution of the linear equations (13). Unfortunately, the Hankel matrix { fn+m−2} is ill
conditioned. Therefore, the SVD method ([17]; Appendix A) is employed again to solve the
linear system (13).

The form of Equations (9) and (13) has some advantages over the normal equation as well
as the SVDLS method in terms of storage requirements. Here, the vector scaling approach
requires only one vector O(N). The performance assessment of the three methods with respect
to the GMRES algorithm as reference method will be discussed in the following section.

4. THE EIGENVALUE COMPUTATION

The characteristics equations are generally not recommended for evaluating the eigenvalues,
mainly due to the fact that for large M the accumulated round-off error can affect the accuracy
of the results. In fact, for large M (M]20) the solution of the type of polynomial equation
became sparse with one exception: computer algebra, where the need for an efficient method
for solving the polynomial equation has fuelled research on the effective algorithms in this area
[18]. The Newton–Raphson method is known to be a reliable and efficient method for solving
the polynomial equation for M]20. For larger N, the QR algorithm applied on the associated
Frobenius matrix may successfully compete with the Newton method for M550. In the
present work, the QR algorithm (see ref. 13) was employed on the associated Frobenius
matrix, i.e.

Á
Ã
Ã
Ã
Í
Ã
Ã
Ã
Ä

0 0 ··· 0 0 −a0

1 0 ··· 0 0 −a1

· · ·
· · ·

0 0 ··· 1 0 −aM−2

0 0 ··· 0 1 −aM−1

Â
Ã
Ã
Ã
Ì
Ã
Ã
Ã
Å

It turned out that some of the M computed eigenvalues are spurious. The presence of the
spurious eigenvalues is probably due to the effect of the remainder terms as well as numerical
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inaccuracy resulted from the SVD solution. However, it transpires numerically that those
terms carry a low energy spectrum (x0). In order to eliminate them from the given M set of
eigenvalues, the following equation was solved:

x0={e (0)}TEGM
−1 (14)

The obtained x0 was found numerically to be the best means to identify those spurious
eigenvalues since their amplitude (x0

(n)) is small. In general, the set of the M eigenvalues terms
was truncated whenever �x0

(n)�/��x0���510−9 to a set of Mt eigenvalues (Mt5M).
To reduce the computer storage in the vector scaling approach, a new set of Mt residuals

{e (2M), e (2M+1), . . . , e
(2M+Mt−1)} where computed. The Richardson extrapolation method (9)

was employed to find the asymptotic solution. In the normal equation and the SVDLS
approaches, the latest Mt residual vectors were employed in the Richardson extrapolation (9).

In the case of vector scaling the smoother iteration count L (see Equation (7)) is determined
by the 2M iterations needed to defined the Hankel matrix, plus another Mt iterations to
generate the residual vectors for the Richardson extrapolation, thus L=2�M+Mt. For the
SVDLS and the normal equation cases, L=M−Mt. Numerically, L was found to be large
enough to ensure stability.

5. RESULTS AND CONCLUSION

In order to assess the efficiency of the PM, the Gauss–Seidel and V-cycle multi-grid algorithms
of the Laplace equation were chosen as a smoother/preconditioner. The one-dimensional,
steady state Burgers equation was taken as a non-linear model equation to examine the
performances of the PM algorithms. The GMRES method was chosen as a reference
algorithm, in which the performances of the normal equation and the vector scaling method
are compared.

In order to check the accuracy of the predicted eigenvalues, the Dirichlet boundary value
problem in a square computational domain was chosen as the first test case. For the
Gauss–Seidel algorithm, the eigenvalues are given as

ln,m=
� 1

1+b2

!
cos

� np

(N−1)
�

+b2 cos
� mp

(M−1)
�"n2

(15)

Table I (b=1) and Table II (b=0.5) compare the eigenvalues of the normal equation and the
vector scaling methods with respect to the GMRES and the analytic eigenvalues expression
(Equation (15)). The computed eigenvalues using the normal equation method have better
accuracy then the GMRES and the vector scaling (see Tables I and II). For larger matrices
(M]20), the accuracy of the PM declines, while the accuracy of the GMRES method
improves. However, due to a storage limitation and computer operation counts, it would be
impractical to employ large matrices. Therefore, it seems that the vector scaling method has
some advantages over the GMRES method.
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Table I. Comparison between the eigenvalues predicted by the GMRES and
the PM with the analytical solution of the Laplace equation in a square

domain (100×100×1, b=1.0, monitored=10).

NE (20) VS (20) AnalyticalGMRES (20)

0.989973 0.989980 0.990130 0.98997886
0.950939 0.9509350.950905 0.95086921

0.904828 0.90407868
0.913828 0.91323028
0.877127 0.8805110.875271 0.87715263
0.799664 0.79669741
0.778659 0.786799 0.77699475
0.7443100.764670 0.74593230

NE, normal equation; VS, vector scaling.

Table II. Comparison between the eigenvalues predicted by the GMRES and
the PM with the analytical solution of the Laplace equation in a square

domain (100×100×1, b=0.5, monitored=50).

GMRES (20) NE (20) VS (20) Analytical

0.95088321 0.950888700.9508885 0.95088853
0.90416715 0.89826848 0.904181340.9041679
0.85977071 0.831364730.8594388 0.85974657
0.76009554 0.75158961
0.74382409 0.73919547

0.7199936 0.72668516 0.72675742
0.69209352 0.69096574

0.637546440.6341560 0.63518688
0.57431210 0.54016109 0.57438259
0.48482647 0.43784185 0.485204790.4868725

NE, normal equation; VS, vector scaling.

Table III summarizes the computing time performances of the SVDLS compared with the
vector scaling and normal equations for the case of the Laplace equation on a rectangular
domain. Gauss–Seidel was chosen here as the smoother algorithm. The SVDLS is the worst
case in terms of computing time (ALPHA500, 400 MHz), among the three cases of the PM
under consideration. Therefore, in the forthcoming sections, only the normal equations and the
vector scaling are considered for the purpose of method evaluation.

Since we are dealing with different methods which require varying amounts of computa-
tional work at each time step, we believe that the CPU time is the only true measure for
comparing them [19]. As already mentioned, the convergence algorithms can exhibit rapid
convergence at the early stage of the iterative process with subsequent gradual decay to the
asymptotic level of the convergence scheme. The slow rate of convergence can result from cell
aspect ratio, skewness and also from numerical problems with the convergence algorithm.
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Table III. Comparison between the performance of the SVDLS to the normal
equations and the vector scaling for a residual ratio of 10−14 (in seconds;

ALPHA500, 400 MHz).

M SVDLS NEGrid size VS

10 4.5 2.8100×100 2.8
20 6.55 2.2 2.47
30 10.1 3.2 2.52

10 80.0 39.0200×200 36.0
20 84.0 39.0 34.0
30 191.0 59.0 36.0

Since the slow rate of convergence is typically due to some error mode distribution, the
uniform initial guess as well as the long range of convergence history will eventually reveal
such a mode if it exists. In view of this, both the PM algorithm and the GMRES method were
compiled on a 64-bit machine (ALPHA500, 400 MHz) using double-precision. The initial
solution for both algorithms was given as a uniform distribution of O(1028). In some cases the
average convergence error was reduced to O(10−18).

The convergence histories for the PM and GMRES methods are shown in Figures 1 and 2
for the Dirichlet boundary value problem of the Laplace equation in a square domain. The
Gauss–Seidel algorithm is not considered to be an efficient preconditioner (see the distribution
of the eigenvalues in Equation (14)). Therefore, it was chosen as a test case when the matrix
A is not well conditioned. The Gauss–Seidel method was chosen as the PM smoother and the
GMRES preconditioner for this case. The solution was monitored every five (Figure 1) and ten
iterations (Figure 2) in which the PM asymptotic solution (m (0)) was predicted at each M=14.
For the GMRES method, the asymptotic solution was predicted at ten search directions, which
were found to be optimal for this case. In each figure, only the predicted values are illustrated.
The results indicate that the PM methods have the same or better rate of convergence in terms
of computer operations as the GMRES method. Both vector scaling and the normal equation
have almost the same rate of convergence in terms of computer operational counts (Figures 1
and 2). However, in terms of computer storage requirements, vector scaling has some
advantages over the normal equation as well as the GMRES method. Only one vector needs
to be stored, while the normal equation as well as the GMRES method require additional
memory storage of O(MN) for the orthogonalization process, and for the search directions.

The next example illustrates the efficiency of the PM algorithms compared with the GMRES
method for three-dimensional potential flow over a sphere. The grid was clustered near the
sphere’s wall and near the sphere’s poles. Exponential clustering was used in the radial and in
the tangential direction. An evenly spaced grid was implemented in the circumferential
direction. The 49×21×49 grid-points in the radial, tangential and circumferential directions
respectively were employed. As for a test case of the effectiveness of the preconditioned
algorithms, the five level V-cycle multi-grid was implemented as a preconditioner/smoother in
which both the SLOR and a residual smoothing algorithms were employed as the multi-grid
smoother. About 10 work units of the multi-grid smoother were required at each cycle. The
results are illustrated in Figure 3 for the double-precision algorithm. In order to remove any
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Figure 1. Comparison between the GMRES method and the normal with Gauss–Seidel as a precondi-
tioner/smoother. Solution is monitored after five iterations, 200×200.

doubt about the sensitivity of the results to the machine accuracy (mainly because we are
dealing with an ill-conditioned systems), the same computation (Figure 4) was carried out
using a quadratic precision on the same machine (-r16 compiler). For the first test case, the
multi-grid smoother was chosen as the PM smoother and the GMRES preconditioner. This
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Figure 2. Comparison between the GMRES method and normal equation with Gauss–Seidel as a
preconditioner/smoother. Solution is monitored after ten iterations, 200×200.

was done by turning off the multi-grid level and executing the Multi-grid algorithm on the fine
grid only. In this case, the vector scaling method works as well as the GMRES method.
However, neither the PM algorithm nor the GMRES method had the same efficiency as the
Multi-grid technique. We need to bear in mind that the PM and GMRES are essentially
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Figure 3. Comparison between the GMRES method and the normal equation for iterations with a
five-level, V-cycle multi-grid as a preconditioner/smoother, 49×21×49.

convergence accelerator algorithms and their best performance is highly dependent on their
smoother/preconditioner. Therefore, as a test case for a well-conditioned matrix A, the
five-level, V-cycle multi-grid was employed as a preconditioner/smoother for both the PM
algorithms and the GMRES method. The rate of convergence of the PM is essentially the same
as that of the GMRES method. Therefore, it appears that vector scaling has some advantage
over the normal equation as was explained before.
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Figure 4. Comparison between the GMRES method and the normal equation with a five-level, V-cycle
multi-grid as a preconditioner/smoother, 49×21×49 (quadratic precision).

The complete non-linear Burger equation is a parabolic partial differential equation (PDE),
which can serve as a model equation for the boundary layer equations for the ‘parabolized
Navier–Stokes’ equations and for the complete Navier–Stokes equations [20]. Therefore, the
last example chosen in the present work is the steady state, one-dimensional, non-linear Burger
equation, written below

u
(u
(x

=
1

Re
(2u
(x2 ; u(0)=u0, u(L)=0
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An upwinding first-order accurate scheme was used for the advection part, while the
standard stencil of second-order central difference was employed for the diffusion term. It is
known that the stencil of the first-order upwind scheme of the advection term contributes a
numerical diffusion term. However, for the number of grid-points employed in this case
(N=1000), its effect on the solution is negligible. The Gauss–Seidel algorithm was employed
on the linearized equation. In Figures 5 and 6, the rates of convergence of the Burger solution
are illustrated in comparison with the PM algorithms and the GMRES method. The solution
was monitored after 100 Newton iterations (Figure 5) and 500 iterations (Figure 6). The
normal equation has a better convergence rate in terms of computer operations compared with

Figure 5. Comparison between the GNRES and the normal equations for the Burger equation (solution
is monitored after 100 iterations, number of grid-points=1000).
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Figure 6. Comparison between the GMRES and the normal equations for the Burger equation (solution
is monitored after 500 iterations, number of grid-points=1000).

the vector scaling algorithm and with the GMRES method, as can be verified from Figures 5
and 6. However, in both cases the vector scaling has almost the same rate of convergence as
the normal equation as well as the GMRES method. It is worth mentioning that the rate of
convergence of both the PM algorithms and the GMRES method are very impressive
compared with the rate of convergence of the Newton smoother/preconditioner. However, in
terms of computer storage requirements, the vector scaling algorithm has some advantage over
the normal equation as well as the GMRES methods.
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In view of the present numerical results, it seems that the PM can be employed as a
post-processor to accelerate convergence of executable numerical codes. Although the GMRES
method is well proven to be an efficient means as a convergence accelerator, the concept of
slaving the main convergence algorithm as a preconditioner limits the applicability of such a
method as a post-processor. On the other hand, the PM does not slave the main algorithm and
uses the available numerical output without interfering with the process of the numerical code
execution. Therefore, the PM offers an option to generate the restart asymptotic solution. Such
a post-processor uses the available numerical residual and runs parallel to the main solver.
However, as was shown, the normal equation requires large computer storage. On the other
hand, vector scaling has almost the same efficiency as the normal equation algorithm and
requires only one vector of N grid points for computer storage. Therefore, vector scaling seems
to be well suited as a convergence accelerator.

APPENDIX A. THE SINGULAR VALUE DECOMPOSITION TECHNIQUE FOR
SOLVING THE LINEAR SYSTEM

The SVD method is the most powerful method to deal with ill-conditioned matrices. Any
matrix E of dimension N×M can be written as E=UWVT, where U and V are orthonormal
matrices while W=diag(s1, s2, s3, . . . , sM) is a diagonal matrix with non-negative entries. In
the particular case when E is a symmetric positive definite matrix, U=V=Q, where Q is the
set of the eigenvectors of E. For symmetric, non-positive definite matrix, V=sign(W)Q. The
inverse of the matrix E is given by

E−1=VW −1UT, W −1=

Á
Ã
Í
Ã
Ä

s−1 1
smax

s\d

0 otherwise
(A.1)

The SVD method is based on the minimum of error [17]. In the present work, d for double
precision calculation was chosen to be t=10−12.

A better approach to deal with ill-conditioning matrices is the Tichonov regularization
method [21]. The minimization of the residual and the error yields

min(
x
2
2+t
Ex− f (1)
2

2)= (a2+ETE)x=ETf (1)

where t is the Lagrange multiplier, while a2=1/t is the Tichonov regularization parameter.
Upon substitution of E=ULVT, the inverse form can be written in a fashion similar to
Equation (A.1), where the diagonal matrix W takes the form

W −1=diag{s1
−1, s2

−1, s3
−1, . . . , sM

−1}; s i
−1=

1
a2

si

+si

(A.2)
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Equations (A.1) and (A.2) were employed in this work for ill-conditioned matrices and for
the Vandermonde matrix form. The determination of an optimal value for the regularization
parameter a is generally not easy [21]. Therefore, a was set for a double precision calculation
to a=10−12.
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